摘要翻译:
缠结聚合物流体在流动状态下通过Kuhn尺度界面演化的结构和流变学在塑料加工中起着重要作用,并有许多其他应用。在Kuhn尺度上定量跟踪链构象统计对于建立此类现象的计算模型是必不可少的。为此,我们在这里建立了一个缠结聚合物链在流动下的双尺度/双模模型。每个链被连续的缠结分割成两种模式之一的股:缠结或悬垂。在链尺度上,理想(非相互作用)链的构象统计量对于其端到端距离的二阶矩遵循一个微分发展方程。后者根据广义Green-Kubo关系和最大熵原理,在Kuhn尺度上调整理想纠缠股的持续随机游动采样构象统计量。我们在简单伸长流和剪切流启动时的一个变形率范围内对它进行了数值测试。一个代表节段相互作用的自洽势在库恩尺度上修改了链构象统计量,因为它重新正化了控制持续随机游动的参数。然后将广义的Green-Kubo关系进行反演,以确定自洽势如何改变股线端到端距离的二阶矩。这使得我们可以为纠缠链的子链的统计权重设计一个两尺度传播方案。后者用于计算纠缠链中每种化学类型Kuhn链段的局部体积分数,从而确定自洽势。
---
英文标题:
《Flow-deformed conformations of entangled polymers as persistent random
walks》
---
作者:
Ismael Yacoubou-Djima and Yitzhak Shnidman (College of Staten Island,
City University of New York)
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Soft Condensed Matter 软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
一级分类:Physics 物理学
二级分类:Materials Science 材料科学
分类描述:Techniques, synthesis, characterization, structure. Structural phase transitions, mechanical properties, phonons. Defects, adsorbates, interfaces
技术,合成,表征,结构。结构相变,力学性质,声子。缺陷,吸附质,界面
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
Evolving structure and rheology across Kuhn scale interfaces in entangled polymer fluids under flow play a prominent role in processing of manufactured plastics, and have numerous other applications. Quantitative tracking of chain conformation statistics on the Kuhn scale is essential for developing computational models of such phenomena. For this purpose, we formulate here a two-scale/two-mode model of entangled polymer chains under flow. Each chain is partitioned by successive entanglements into strands that are in one of two modes: entangled or dangling. On the strand scale, conformation statistics of ideal (non-interacting) strands follows a differential evolution equation for the second moment of its end-to-end distance. The latter regulates persistent random walks sampling conformation statistics of ideal entangled strands on the Kuhn scale, as follows from a generalized Green-Kubo relation and the Maximum Entropy Principle. We test it numerically for a range of deformation rates at the start-up of simple elongational and shear flows. A self-consistent potential, representing segmental interactions, modifies strand conformation statistics on the Kuhn scale, as it renormalizes the parameters controlling the persistent random walk. The generalized Green-Kubo relation is then inverted to determine how the second moment of the strand end-to-end distance is changed by the self-consistent potential. This allows us to devise a two-scale propagation scheme for the statistical weights of subchains of the entangled chain. The latter is used to calculate local volume fractions for each chemical type of Kuhn segments in entangled chains, thus determining the self-consistent potential.
---
PDF链接:
https://arxiv.org/pdf/708.2679