摘要翻译:
利用我们最近提出的一种分析具有θ项的系统的θ依赖关系的方法,研究了Cp^1在θ=pi时的临界行为。我们在强耦合区之外找到了一个区域,验证了霍尔丹猜想。然而,在拓扑耦合k=1时,临界线不属于Wess-Zumino-Novikov-Witten模型的普适类,因为它表现出连续变化的临界指数。
---
英文标题:
《Critical Behavior of CP^1 at theta = pi, Haldane's Conjecture and the
Universality Class》
---
作者:
V. Azcoiti, G. Di Carlo, A. Galante
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:High Energy Physics - Lattice 高能物理-晶格
分类描述:Lattice field theory. Phenomenology from lattice field theory. Algorithms for lattice field theory. Hardware for lattice field theory.
晶格场论。从晶格场论到现象学。格场论的算法。晶格场论硬件。
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
Using an approach to analyze the theta dependence of systems with a theta-term we recently proposed, the critical behavior of CP^1 at theta=pi is studied. We find a region outside the strong coupling regime where Haldane's conjecture is verified. The critical line however does not belong to the universality class of the Wess-Zumino-Novikov-Witten model at topological coupling k=1 since it shows continuously varying critical exponents.
---
PDF链接:
https://arxiv.org/pdf/710.1507