摘要翻译:
本文应用Guillen-Navarro下降定理,引用{GN02},定义了特征零域上的代数K$-变体理论的一个下降变体,它与光滑变体的mathcal{K}(X)$相一致。经过Haesemeyer的一个结果,这个新理论与Weibel提出的同伦代数K$-理论等价。我们还证明了在基团$KH_\AST(X)$上存在自然权重过滤。
---
英文标题:
《Algebraic K-theory and cubical descent》
---
作者:
Pere Pascual Gainza, Llorenc Rubio i Pons
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this note we apply Guillen-Navarro descent theorem, \cite{GN02}, to define a descent variant of the algebraic $K$-theory of varieties over a field of characteristic zero, $\mathcal{KD}(X)$, which coincides with $\mathcal{K}(X)$ for smooth varieties. After a result of Haesemeyer, this new theory is equivalent to the homotopy algebraic $K$-theory introduced by Weibel. We also prove that there is a natural weight filtration on the groups $KH_\ast(X)$.
---
PDF链接:
https://arxiv.org/pdf/0706.2257