摘要翻译:
我们研究了在完全非对称简单排斥过程(TASEP)中,对于粒径为$\ell\geq1$(以晶格间距为单位)的粒子,局部不均匀性,即跳跃速率慢点$q<1$的影响。我们比较了$\ell=1$和$\ell>1$的模拟结果,注意到局域缺陷的存在对稳态的影响定性地相似。我们重点研究了稳态电流和密度分布。如果系统中只有一个慢速站点,那么在$\ell=1$和$\ell>1$的情况下,我们观察到电流对慢速站点的\emph{location}的显著依赖。当引入两个慢点时,会出现更有趣的现象,例如,当两个慢点靠近时,电流会急剧下降。此外,我们研究了当$q\到0$时的渐近行为。我们还探索了相关的密度分布,并将我们的发现与早期使用简单平均场理论的研究进行了比较。然后我们概述了这些效应的生物学意义。
---
英文标题:
《Inhomogeneous exclusion processes with extended objects: The effect of
defect locations》
---
作者:
J. J. Dong, B. Schmittmann and R. K. P. Zia
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We study the effects of local inhomogeneities, i.e., slow sites of hopping rate $q<1$, in a totally asymmetric simple exclusion process (TASEP) for particles of size $\ell \geq 1$ (in units of the lattice spacing). We compare the simulation results of $\ell =1$ and $\ell >1$ and notice that the existence of local defects has qualitatively similar effects on the steady state. We focus on the stationary current as well as the density profiles. If there is only a single slow site in the system, we observe a significant dependence of the current on the \emph{location} of the slow site for both $\ell =1$ and $\ell >1$ cases. When two slow sites are introduced, more intriguing phenomena emerge, e.g., dramatic decreases in the current when the two are close together. In addition, we study the asymptotic behavior when $q\to 0$. We also explore the associated density profiles and compare our findings to an earlier study using a simple mean-field theory. We then outline the biological significance of these effects.
---
PDF链接:
https://arxiv.org/pdf/710.3865