摘要翻译:
本文通过数值模拟研究了(1+1)维Kardar-Parisi-Zhang方程的非平衡动力学,重点研究了在无无序环境下界面的两次演化。这项工作表明,即使在这种简单的情况下,一种丰富的衰老行为发展起来。对于两倍粗糙度的系统,我们观察到了一个乘法老化方案,其特征是与静止状态下相同的增长指数。该分析允许识别相关的增长相关长度,考虑系统中的重要尺度变量。计算了两次粗糙度的分布函数,并用广义标度关系描述了两次粗糙度的分布函数。这些结果很好地揭示了无序介质中非线性弹性线的重要情况下的玻璃动力学。
---
英文标题:
《Aging dynamics of non-linear elastic interfaces: the Kardar-Parisi-Zhang
equation》
---
作者:
Sebastian Bustingorry
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
In this work, the out-of-equilibrium dynamics of the Kardar-Parisi-Zhang equation in (1+1) dimensions is studied by means of numerical simulations, focussing on the two-times evolution of an interface in the absence of any disordered environment. This work shows that even in this simple case, a rich aging behavior develops. A multiplicative aging scenario for the two-times roughness of the system is observed, characterized by the same growth exponent as in the stationary regime. The analysis permits the identification of the relevant growing correlation length, accounting for the important scaling variables in the system. The distribution function of the two-times roughness is also computed and described in terms of a generalized scaling relation. These results give good insight into the glassy dynamics of the important case of a non-linear elastic line in a disordered medium.
---
PDF链接:
https://arxiv.org/pdf/708.2615