摘要翻译:
美式和多重行权期权的定价是数学金融学中一个极具挑战性的问题。对于马尔可夫框架下的最优停止或随机控制问题,通常采用最小二乘蒙特卡罗方法(Longstaff-Schwartz方法)来估计倒向动态规划原理中产生的条件期望。不幸的是,这些最小二乘蒙特卡罗方法相当缓慢,并且由于逆向动态规划原理中的依赖结构,不允许并行实现;是否在蒙特卡罗层次上,在时间层层次上,这个问题。因此,我们在本文中提出了一种计算条件期望的量化方法,它允许在蒙特卡罗水平上直接并行化。此外,我们还可以为AR(1)进程在时域中进一步并行化,它利用更快的内存结构,从而最大限度地提高并行执行。最后,我们给出了该方法的CUDA实现的数值结果。与串行CPU实现相比,这样的实现会带来令人印象深刻的加速。
---
英文标题:
《GPGPUs in computational finance: Massive parallel computing for American
style options》
---
作者:
Gilles Pag\`es (PMA), Benedikt Wilbertz (PMA)
---
最新提交年份:
2011
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
英文摘要:
The pricing of American style and multiple exercise options is a very challenging problem in mathematical finance. One usually employs a Least-Square Monte Carlo approach (Longstaff-Schwartz method) for the evaluation of conditional expectations which arise in the Backward Dynamic Programming principle for such optimal stopping or stochastic control problems in a Markovian framework. Unfortunately, these Least-Square Monte Carlo approaches are rather slow and allow, due to the dependency structure in the Backward Dynamic Programming principle, no parallel implementation; whether on the Monte Carlo levelnor on the time layer level of this problem. We therefore present in this paper a quantization method for the computation of the conditional expectations, that allows a straightforward parallelization on the Monte Carlo level. Moreover, we are able to develop for AR(1)-processes a further parallelization in the time domain, which makes use of faster memory structures and therefore maximizes parallel execution. Finally, we present numerical results for a CUDA implementation of this methods. It will turn out that such an implementation leads to an impressive speed-up compared to a serial CPU implementation.
---
PDF链接:
https://arxiv.org/pdf/1101.3228