摘要翻译:
我们探讨了在振荡刺激下整合-激发神经元的动力学。由于神经元的自然放电周期与振荡节律周期之间的竞争而产生的挫败感,导致了丰富的渐近锁相模式和有序动力学结构。这些状态之间的相变可以分为切分和间断分岔,每种分岔都有自己的标度律。间断分岔表现出一种介于连续和一级之间的新的相变,而切分岔表现为具有发散相干尺度的连续相变。
---
英文标题:
《Dynamical Phase Transitions In Driven Integrate-And-Fire Neurons》
---
作者:
Jan R. Engelbrecht and Renato Mirollo
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Quantitative Biology 数量生物学
二级分类:Neurons and Cognition 神经元与认知
分类描述:Synapse, cortex, neuronal dynamics, neural network, sensorimotor control, behavior, attention
突触,皮层,神经元动力学,神经网络,感觉运动控制,行为,注意
--
---
英文摘要:
We explore the dynamics of an integrate-and-fire neuron with an oscillatory stimulus. The frustration due to the competition between the neuron's natural firing period and that of the oscillatory rhythm, leads to a rich structure of asymptotic phase locking patterns and ordering dynamics. The phase transitions between these states can be classified as either tangent or discontinuous bifurcations, each with its own characteristic scaling laws. The discontinuous bifurcations exhibit a new kind of phase transition that may be viewed as intermediate between continuous and first order, while tangent bifurcations behave like continuous transitions with a diverging coherence scale.
---
PDF链接:
https://arxiv.org/pdf/710.0391