摘要翻译:
我们说域上的代数群$G$是反仿射的,如果$G$上的每一个正则函数都是常数。我们得到了这些群的一个分类,并应用于正特征代数群的结构,以及Hilbert第十四问题的许多反例的构造。
---
英文标题:
《Anti-affine algebraic groups》
---
作者:
Michel Brion
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Group Theory 群论
分类描述:Finite groups, topological groups, representation theory, cohomology, classification and structure
有限群、拓扑群、表示论、上同调、分类与结构
--
---
英文摘要:
We say that an algebraic group $G$ over a field is anti-affine if every regular function on $G$ is constant. We obtain a classification of these groups, with applications to the structure of algebraic groups in positive characteristics, and to the construction of many counterexamples to Hilbert's fourteenth problem.
---
PDF链接:
https://arxiv.org/pdf/0710.5211