摘要翻译:
我们讨论了两个具有猝灭无序的模型之间的对偶性的物理后果,其中粒子在随机陷阱中一维传播或穿过随机势垒。我们导出了它们在固定无序状态下的扩散前沿之间的精确关系,并由此推导出它们的无序平均扩散前沿是完全相等的。我们使用有效的动力学格式来隔离粒子在模型中传播的不同物理过程,并讨论了这些不同过程的速率之间的对应是如何产生对偶性的。
---
英文标题:
《Duality between random trap and barrier models》
---
作者:
Robert L. Jack, Peter Sollich
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
---
英文摘要:
We discuss the physical consequences of a duality between two models with quenched disorder, in which particles propagate in one dimension among random traps or across random barriers. We derive an exact relation between their diffusion fronts at fixed disorder, and deduce from this that their disorder-averaged diffusion fronts are exactly equal. We use effective dynamics schemes to isolate the different physical processes by which particles propagate in the models and discuss how the duality arises from a correspondence between the rates for these different processes.
---
PDF链接:
https://arxiv.org/pdf/710.1665