摘要翻译:
给出了半交换型指数微分方程的完全一阶理论。研究表明,这些理论也源于赫鲁晓夫斯基风格的一种带有预维度的融合结构。该理论包括一个方程组有解的充要条件。该必要条件将Ax微分域形式的Schanuel猜想推广到半交换型。半交换群的弱CIT是一个纯代数推论,它涉及代数子群与代数群的交集。
---
英文标题:
《The theory of the exponential differential equations of semiabelian
varieties》
---
作者:
Jonathan Kirby
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Logic 逻辑
分类描述:Logic, set theory, point-set topology, formal mathematics
逻辑,集合论,点集拓扑,形式数学
--
---
英文摘要:
The complete first order theories of the exponential differential equations of semiabelian varieties are given. It is shown that these theories also arises from an amalgamation-with-predimension construction in the style of Hrushovski. The theory includes necessary and sufficient conditions for a system of equations to have a solution. The necessary condition generalizes Ax's differential fields version of Schanuel's conjecture to semiabelian varieties. There is a purely algebraic corollary, the "Weak CIT" for semiabelian varieties, which concerns the intersections of algebraic subgroups with algebraic varieties.
---
PDF链接:
https://arxiv.org/pdf/0708.1352