摘要翻译:
在本文中,我将用统计力学的方法来计算大维正则格子的最大密度。起点将是Roger的一些定理,这些定理在物理学家群体中几乎是未知的。用他的方法,我们可以看到,这与计算完美球体液体熵的问题有许多相似之处(也有不同之处)。详细研究了这两个问题之间的关系。提出了一些猜想,需要进一步研究,以检验它们的一致性。
---
英文标题:
《On the most compact regular lattice in large dimensions: A statistical
  mechanical approach》
---
作者:
Giorgio Parisi
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics        物理学
二级分类:Soft Condensed Matter        软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
---
英文摘要:
  In this paper I will approach the computation of the maximum density of regular lattices in large dimensions using a statistical mechanics approach. The starting point will be some theorems of Roger, which are virtually unknown in the community of physicists. Using his approach one can see that there are many similarities (and differences) with the problem of computing the entropy of a liquid of perfect spheres. The relation between the two problems is investigated in details. Some conjectures are presented, that need further investigation in order to check their consistency. 
---
PDF链接:
https://arxiv.org/pdf/710.0882