摘要翻译:
奇点多项式表示对偶于奇点子流形的上同调类。Thom多项式的一个稳定性质是经典的,即平凡的展开不改变Thom多项式。本文证明了这是乘积规则的一个特例。乘积法则使我们能够在知道乘积奇点的Thom多项式的情况下计算奇点的Thom多项式。作为乘积规则的一个特例,我们定义了一个与有限维交换复局部代数Q相关的形式幂级数(Thom级数,Ts_Q),使得具有局部代数Q的{em每}个奇点的Thom多项式可以从Ts_Q中恢复出来。
---
英文标题:
《On the structure of Thom polynomials of singularities》
---
作者:
L. M. Feher, R. Rimanyi
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
---
英文摘要:
Thom polynomials of singularities express the cohomology classes dual to singularity submanifolds. A stabilization property of Thom polynomials is known classically, namely that trivial unfolding does not change the Thom polynomial. In this paper we show that this is a special case of a product rule. The product rule enables us to calculate the Thom polynomials of singularities if we know the Thom polynomial of the product singularity. As a special case of the product rule we define a formal power series (Thom series, Ts_Q) associated with a commutative, complex, finite dimensional local algebra Q, such that the Thom polynomial of {\em every} singularity with local algebra Q can be recovered from Ts_Q.
---
PDF链接:
https://arxiv.org/pdf/0708.3068