摘要翻译:
考虑由非对称双曲线积分得到的对数函数和指数函数的单参数推广。这些推广与在非广泛的热统计中得到的结论是一致的。我们证明了这些函数适用于描述和统一大多数连续增长模型,并简要回顾了这些模型。对Richards模型的推广函数参数给出了物理解释,该模型有一个潜在的微观模型来证明它的合理性。
---
英文标题:
《Continuous growth models in terms of generalized logarithm and
exponential functions》
---
作者:
Alexandre Souto Martinez, Rodrigo Silva Gonzalez and Cesar Augusto
Sangaletti Tercariol
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
一级分类:Physics 物理学
二级分类:Biological Physics 生物物理学
分类描述:Molecular biophysics, cellular biophysics, neurological biophysics, membrane biophysics, single-molecule biophysics, ecological biophysics, quantum phenomena in biological systems (quantum biophysics), theoretical biophysics, molecular dynamics/modeling and simulation, game theory, biomechanics, bioinformatics, microorganisms, virology, evolution, biophysical methods.
分子生物物理、细胞生物物理、神经生物物理、膜生物物理、单分子生物物理、生态生物物理、生物系统中的量子现象(量子生物物理)、理论生物物理、分子动力学/建模与模拟、博弈论、生物力学、生物信息学、微生物、病毒学、进化论、生物物理方法。
--
---
英文摘要:
Consider the one-parameter generalizations of the logarithmic and exponential functions which are obtained from the integration of non-symmetrical hyperboles. These generalizations coincide to the one obtained in the context of non-extensive thermostatistics. We show that these functions are suitable to describe and unify the great majority of continuous growth models, which we briefly review. Physical interpretation to the generalization function parameter is given for the Richards' model, which has an underlying microscopic model to justify it.
---
PDF链接:
https://arxiv.org/pdf/0803.2635