摘要翻译:
光滑实二进制八元的模空间有五个连通分量。它们将定义方程分别具有0,1,...,4对复共轭根的实二元八倍数参数化。我们证明了这五个分量中的每一个的Git稳定完备都允许算术实双曲轨道的结构。相应的单模群是可公度的离散双曲反射群,并计算了它们的Vinberg图。通过一个简单的证明,证明了Git稳定的实二元八元的模空间本身不可能是实双曲轨道。
---
英文标题:
《On the Geometry of the Moduli Space of Real Binary Octics》
---
作者:
Kenneth C. K. Chu
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
---
英文摘要:
The moduli space of smooth real binary octics has five connected components. They parametrize the real binary octics whose defining equations have 0, 1, ..., 4 complex-conjugate pairs of roots respectively. We show that the GIT-stable completion of each of these five components admits the structure of an arithmetic real hyperbolic orbifold. The corresponding monodromy groups are, up to commensurability, discrete hyperbolic reflection groups, and their Vinberg diagrams are computed. We conclude with a simple proof that the moduli space of GIT-stable real binary octics itself cannot be a real hyperbolic orbifold.
---
PDF链接:
https://arxiv.org/pdf/0708.0419