摘要翻译:
证明了对于李代数的任何态射I:G-->h,李代数h下的向量空间是正则的g齐次形式流形,且g是高度非线性的且被Bernoulli数扭曲的。这一事实是从形式齐次空间的2色运算及其最小分辨率的研究中得到的,并用于在两个李代数的态射的映射锥上给出Ziv Ran的Jacobi-Bernoulli复形和Fiorenza-Manetti的L-无穷代数结构的新的概念解释。所有这些构造都被迭代推广到任意L-无穷代数的一个态射的情形。
---
英文标题:
《Operad of formal homogeneous spaces and Bernoulli numbers》
---
作者:
S.A. Merkulov
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
It is shown that for any morphism, i: g --> h, of Lie algebras the vector space underlying the Lie algebra h is canonically a g-homogeneous formal manifold with the action of g being highly nonlinear and twisted by Bernoulli numbers. This fact is obtained from the study of a 2-coloured operad of formal homogeneous spaces and its minimal resolution, and is used to give a new conceptual explanation of both Ziv Ran's Jacobi-Bernoulli complex and Fiorenza-Manetti's L-infinity algebra structure on the mapping cone of a morphism of two Lie algebras. All these constructions are iteratively extended to the case of a morphism of arbitrary L-infinity algebras.
---
PDF链接:
https://arxiv.org/pdf/0708.0891