摘要翻译:
本文基于蒙特卡罗算法,对立方晶格上自旋为sigma=pm1/2$和自旋为s=0,pm1$的混合Ising亚铁磁模型的磁性质进行了数值研究。我们进行了精确的基态计算和蒙特卡罗模拟,得到了模型的有限温度相图。当自旋$\sigma=\pm1/2$之间的次近邻相互作用超过一个最小值时,出现一个补偿点。我们发现补偿温度与哈密顿量中的相互作用有很强的相关性,特别是与晶体场和外场的相互作用。施加的场可以改变补偿温度的值范围,从零到取决于场的最大值。
---
英文标题:
《Numerical Study of a Three-Dimensional Mixed Ising Ferrimagnet in the
Presence of an External Field》
---
作者:
G.M. Buendia and N. Hurtado
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We present a numerical study based on Monte Carlo algorithm of the magnetic properties of a mixed Ising ferrimagnetic model on a cubic lattice where spins $\sigma =\pm 1/2$ and spins $S=0,\pm 1$ are in alternating sites on the lattice. We carried out exact ground state calculations and employ a Monte Carlo simulation to obtain the finite-temperature phase diagram of the model. A compensation point appears when the next-nearest-neighbor interaction between the spins $\sigma =\pm 1/2$ exceeds a minimum value. We found a strong dependence of the compensation temperature with the interactions in the Hamiltonian, particulary the crystal field and the external field. An applied field can change the range of values of the compensation temperature from zero up to a maximum value that depends on the field.
---
PDF链接:
https://arxiv.org/pdf/710.3592