摘要翻译:
本文从数学金融学的角度讨论了突出的Heston偏微分方程数值解的稳定性。我们研究了中心二阶有限差分离散化方法,从而得到了具有非正规矩阵A的大型半离散系统。利用对数谱范数,我们证明了实际的、严格的稳定性界。我们的理论稳定性结果得到了大量数值实验的验证。
---
英文标题:
《Stability of central finite difference schemes for the Heston PDE》
---
作者:
K.J. in 't Hout and K. Volders
---
最新提交年份:
2010
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
This paper deals with stability in the numerical solution of the prominent Heston partial differential equation from mathematical finance. We study the well-known central second-order finite difference discretization, which leads to large semi-discrete systems with non-normal matrices A. By employing the logarithmic spectral norm we prove practical, rigorous stability bounds. Our theoretical stability results are illustrated by ample numerical experiments.
---
PDF链接:
https://arxiv.org/pdf/1011.6532