摘要翻译:
我们证明了如果在某个数域上存在一条处处局部可解的对角平面三次曲线,但在该数域的任意三次伽罗瓦扩张上不存在点,则Brauer-Manin阻塞的代数部分不是K3曲面Hasse原理的唯一阻塞。
---
英文标题:
《Cubic points on cubic curves and the Brauer-Manin obstruction on K3
surfaces》
---
作者:
Ronald van Luijk
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We show that if over some number field there exists a certain diagonal plane cubic curve that is locally solvable everywhere, but that does not have points over any cubic galois extension of the number field, then the algebraic part of the Brauer-Manin obstruction is not the only obstruction to the Hasse principle for K3 surfaces.
---
PDF链接:
https://arxiv.org/pdf/0708.2752