摘要翻译:
证明了复n空间中光滑伪凸域上的D'Angelo有限型与Kohn有限理想型是等价的。这就是科恩猜想。论证使用了Catlin的边界系统的概念以及次解析和半代数几何的方法。当边界子集只包含两个Catlin多型的水平集时,根据D'Angelo型、环境空间维数和形式水平,得到了Bar部分Neumann问题亚椭圆增益的一个下界。
---
英文标题:
《Equivalence of types and Catlin boundary systems》
---
作者:
Andreea C. Nicoara
---
最新提交年份:
2013
---
分类信息:
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The D'Angelo finite type is shown to be equivalent to the Kohn finite ideal type on smooth, pseudoconvex domains in complex n space. This is known as the Kohn Conjecture. The argument uses Catlin's notion of a boundary system as well as methods from subanalytic and semialgebraic geometry. When a subset of the boundary contains only two level sets of the Catlin multitype, a lower bound for the subelliptic gain in the \bar\partial-Neumann problem is obtained in terms of the D'Angelo type, the dimension of the ambient space, and the level of forms.
---
PDF链接:
https://arxiv.org/pdf/0711.0429