摘要翻译:
设f(x,y)=0是定义在原点邻域内的平面解析曲线方程,设$\pi:m\to(\cn^2,0)$是局部的曲面修正。我们给出了一个公式,它将若干个双点\delta_0(f)$与一个和$\sum_p\delta_p(\tildeF)$连接起来,该和$\sum_p\delta_p(\tildeF)$在f=0的适当前像与例外除数的所有交点上运行。
---
英文标题:
《Kouchnirenko type formulas for local invariants of plane analytic curves》
---
作者:
Janusz Gwozdziewicz
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let f(x,y)=0 be an equation of plane analytic curve defined in the neighborhood of the origin and let $\pi:M\to(\Cn^2,0)$ be a local toric modification. We give a formula which connects a number of double points \delta_0(f)$ with a sum $\sum_p \delta_p(\tilde f)$ which runs over all intersection points of the proper preimage of f=0 with the exceptional divisor.
---
PDF链接:
https://arxiv.org/pdf/0707.3404