摘要翻译:
考虑了有损数据压缩算法的理论极限。宏观观察者所看到的对象的复杂性是知觉代码的大小,它在不改变特定观察者的知觉的情况下丢弃所有可能丢失的信息。这种宏观观察到的状态的复杂性是对包括这种宏观状态的任何微观状态的最简单的描述。基于宏观状态而不是微观状态复杂性的推理和模式识别将利用宏观观测器的复杂性忽略无关噪声。
---
英文标题:
《On Macroscopic Complexity and Perceptual Coding》
---
作者:
John Scoville
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Multimedia 多媒体
分类描述:Roughly includes material in ACM Subject Class H.5.1.
大致包括ACM学科类H.5.1中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
The theoretical limits of 'lossy' data compression algorithms are considered. The complexity of an object as seen by a macroscopic observer is the size of the perceptual code which discards all information that can be lost without altering the perception of the specified observer. The complexity of this macroscopically observed state is the simplest description of any microstate comprising that macrostate. Inference and pattern recognition based on macrostate rather than microstate complexities will take advantage of the complexity of the macroscopic observer to ignore irrelevant noise.
---
PDF链接:
https://arxiv.org/pdf/1005.1684