全部版块 我的主页
论坛 经济学人 二区 外文文献专区
244 0
2022-03-08
摘要翻译:
提出了一种改进的随机游动模型,并在此基础上提出了两种新的聚类算法。该算法将数据集中的每一个数据点看作是一个粒子,可以根据修正模型中预先设定的规则在空间中任意移动。此外,该数据点也可以看作是一个局部控制子系统,其中控制器根据所有数据点的反馈来调整其转移概率向量,然后通过事件生成函数来识别其转移方向。最后更新所有数据点的位置。当它们在空间中移动时,数据点逐渐收集,并自动地在它们之间产生一些分离的部分。因此,属于同一类的数据点位于同一位置,而属于不同类的数据点彼此远离。实验结果表明,测试数据集中的数据点得到了合理有效的聚类,与其他算法的比较也表明了所提算法的有效性。
---
英文标题:
《A Novel Clustering Algorithm Based on a Modified Model of Random Walk》
---
作者:
Qiang Li, Yan He, Jing-ping Jiang
---
最新提交年份:
2008
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Multiagent Systems        多智能体系统
分类描述:Covers multiagent systems, distributed artificial intelligence, intelligent agents, coordinated interactions. and practical applications. Roughly covers ACM Subject Class I.2.11.
涵盖多Agent系统、分布式人工智能、智能Agent、协调交互。和实际应用。大致涵盖ACM科目I.2.11类。
--

---
英文摘要:
  We introduce a modified model of random walk, and then develop two novel clustering algorithms based on it. In the algorithms, each data point in a dataset is considered as a particle which can move at random in space according to the preset rules in the modified model. Further, this data point may be also viewed as a local control subsystem, in which the controller adjusts its transition probability vector in terms of the feedbacks of all data points, and then its transition direction is identified by an event-generating function. Finally, the positions of all data points are updated. As they move in space, data points collect gradually and some separating parts emerge among them automatically. As a consequence, data points that belong to the same class are located at a same position, whereas those that belong to different classes are away from one another. Moreover, the experimental results have demonstrated that data points in the test datasets are clustered reasonably and efficiently, and the comparison with other algorithms also provides an indication of the effectiveness of the proposed algorithms.
---
PDF链接:
https://arxiv.org/pdf/0810.5484
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群