摘要翻译:
研究了射影Calabi-Yau流形上的Ricci-平坦Kahler度量族在Kahler类退化到充分锥边界时的行为。我们证明了如果极限类是大的且nef的,则Ricci-平坦度量在子簇外的紧集上平滑收敛到极限不完全Ricci-平坦度量。极限也可以从代数几何中理解。
---
英文标题:
《Limits of Calabi-Yau metrics when the Kahler class degenerates》
---
作者:
Valentino Tosatti
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics        数学
二级分类:Differential Geometry        微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  We study the behaviour of families of Ricci-flat Kahler metrics on a projective Calabi-Yau manifold when the Kahler classes degenerate to the boundary of the ample cone. We prove that if the limit class is big and nef the Ricci-flat metrics converge smoothly on compact sets outside a subvariety to a limit incomplete Ricci-flat metric. The limit can also be understood from algebraic geometry. 
---
PDF链接:
https://arxiv.org/pdf/0710.4579