摘要翻译:
结构模型承认多种约简形式,如具有多种均衡的博弈论模型,在实践中提出了挑战,尤其是当参数被设定识别并且识别的集合很大时。在这种情况下,研究人员通常选择集中在均衡的一个特定子集上进行反事实分析,但这种选择很难证明是合理的。本文表明,对于反事实分析,某些参数值可能比其他参数值更“可取”,即使它们在给定数据的经验上是等效的。特别是,在所识别的集合中,一些反事实预测可以比其他预测显示出更强的鲁棒性,以对抗约简形式的局部扰动(例如,平衡选择规则)。我们提供了这个子集的一个表示,可以用来简化实现。我们使用矩不等式模型来说明我们的信息,并提供了一个基于顶部编码数据模型的经验应用。
---
英文标题:
《Counterfactual Analysis under Partial Identification Using Locally
Robust Refinement》
---
作者:
Nathan Canen and Kyungchul Song
---
最新提交年份:
2021
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
英文摘要:
Structural models that admit multiple reduced forms, such as game-theoretic models with multiple equilibria, pose challenges in practice, especially when parameters are set-identified and the identified set is large. In such cases, researchers often choose to focus on a particular subset of equilibria for counterfactual analysis, but this choice can be hard to justify. This paper shows that some parameter values can be more "desirable" than others for counterfactual analysis, even if they are empirically equivalent given the data. In particular, within the identified set, some counterfactual predictions can exhibit more robustness than others, against local perturbations of the reduced forms (e.g. the equilibrium selection rule). We provide a representation of this subset which can be used to simplify the implementation. We illustrate our message using moment inequality models, and provide an empirical application based on a model with top-coded data.
---
PDF链接:
https://arxiv.org/pdf/1906.00003