摘要翻译:
自综合控制方法提出以来,基于人工控制构建的反事实来衡量单个(或几个)治疗单元的治疗(干预)效果已成为应用统计学和经济学中的一种流行做法。在高维背景下,我们经常使用主成分或(弱)稀疏回归来估计反事实。我们是否使用了足够的数据信息?为了更好地估计价格变化对销售的影响,我们提出了一个高维相关数据反事实分析的一般框架。该框架既包括主成分回归,也包括稀疏线性回归作为具体案例。它同时使用因子和特质成分作为预测因子进行改进的反事实分析,形成了一种称为因子调整正则化处理方法(FarmTreat)的评价方法。我们令人信服地证明,在许多应用中,使用因子或稀疏回归都不足以进行反事实分析,信息增益的情况可以通过使用特质成分来实现。我们还发展了理论和方法来正式回答公共因素是否足以估计反事实的问题。此外,我们考虑了一种简单的重采样方法来进行治疗效果的推断,以及bootstrap测试来获取特质成分的相关性。基于巴西一家大型零售连锁店的销售数据,我们应用所提出的方法评估了价格变化对一组产品销售的影响,并证明了在治疗效果评估中使用额外的特殊成分的好处。
---
英文标题:
《Do We Exploit all Information for Counterfactual Analysis? Benefits of
Factor Models and Idiosyncratic Correction》
---
作者:
Jianqing Fan, Ricardo P. Masini, Marcelo C. Medeiros
---
最新提交年份:
2021
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
The measurement of treatment (intervention) effects on a single (or just a few) treated unit(s) based on counterfactuals constructed from artificial controls has become a popular practice in applied statistics and economics since the proposal of the synthetic control method. In high-dimensional setting, we often use principal component or (weakly) sparse regression to estimate counterfactuals. Do we use enough data information? To better estimate the effects of price changes on the sales in our case study, we propose a general framework on counterfactual analysis for high dimensional dependent data. The framework includes both principal component regression and sparse linear regression as specific cases. It uses both factor and idiosyncratic components as predictors for improved counterfactual analysis, resulting a method called Factor-Adjusted Regularized Method for Treatment (FarmTreat) evaluation. We demonstrate convincingly that using either factors or sparse regression is inadequate for counterfactual analysis in many applications and the case for information gain can be made through the use of idiosyncratic components. We also develop theory and methods to formally answer the question if common factors are adequate for estimating counterfactuals. Furthermore, we consider a simple resampling approach to conduct inference on the treatment effect as well as bootstrap test to access the relevance of the idiosyncratic components. We apply the proposed method to evaluate the effects of price changes on the sales of a set of products based on a novel large panel of sale data from a major retail chain in Brazil and demonstrate the benefits of using additional idiosyncratic components in the treatment effect evaluations.
---
PDF下载:
-->