摘要翻译:
我们给出了一阶量子相变无序四舍五入为连续相变的启发式论证。通过对一维n色量子Ashkin-Teller模型的弱无序和强无序分析,我们发现对于$n\geq3$,一阶跃迁被舍入为连续跃迁,在有限参数区,物理图象与随机横场Ising模型相同。结果明显不同于二维经典问题,其中重整化群流的归宿是对应于n-解耦纯伊辛模型的不动点。
---
英文标题:
《Rounding by disorder of first-order quantum phase transitions: emergence
of quantum critical points》
---
作者:
Pallab Goswami, David Schwab, Sudip Chakravarty
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We give a heuristic argument for disorder rounding of a first order quantum phase transition into a continuous phase transition. From both weak and strong disorder analysis of the the N-color quantum Ashkin-Teller model in one spatial dimension, we find that for $N \geq 3$, the first order transition is rounded to a continuous transition and the physical picture is the same as the random transverse field Ising model for a limited parameter regime. The results are strikingly different from the corresponding classical problem in two dimensions where the fate of the renormalization group flows is a fixed point corresponding to N-decoupled pure Ising models.
---
PDF链接:
https://arxiv.org/pdf/708.2917