摘要翻译:
我们描述了非k\\“Ahlerian曲面的正锥和伪有效锥,并将这些结果用于两类应用:-描述了固定体积1上与Gauduchon度量相关的可能总Ricci标量集$\sigma(X)$,并判定赋值$X\mapsto\sigma(X)$是否是变形不变量。-研究VII类曲面$x$的正$b_2$的规范扩张$$0\到{\cal K}_x\到{\cal A}\到{\cal O}_x\到0$$的稳定性。这个推广在我们用规范理论方法证明GSS猜想的策略中起着重要的作用。
---
英文标题:
《The pseudo-effective cone of a non-K\"ahlerian surface and applications》
---
作者:
Andrei Teleman
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
---
英文摘要:
We describe the positive cone and the pseudo-effective cone of a non-K\"ahlerian surface. We use these results for two types of applications: - Describe the set $\sigma(X)$ of possible total Ricci scalars associated with Gauduchon metrics of fixed volume 1 on a fixed non-K\"ahhlerian surface, and decide whether the assignment $X\mapsto\sigma(X)$ is a deformation invariant. - Study the stability of the canonical extension $$0\to {\cal K}_X\to {\cal A}\to{\cal O}_X\to 0$$ of a class VII surface $X$ with positive $b_2$. This extension plays an important role in our strategy to prove the GSS conjecture using gauge theoretical methods.
---
PDF链接:
https://arxiv.org/pdf/0704.2948