全部版块 我的主页
论坛 经济学人 二区 外文文献专区
409 0
2022-03-08
摘要翻译:
海量机器型通信(mMTC)是第五代移动网络(5G)的三个关键应用场景之一,其特征是大量连接的设备传输相对较低的非延迟敏感数据。为了支持mMTC通信,提出了一种上行链路(UL)无授权稀疏码多址(SCMA)系统。在该系统中,在对数据进行解码之前,需要先获得用户设备的状态信息。现有的解决方案是利用压缩感知(CS)理论在平坦衰落信道的假设条件下检测有源UE。但这种假设条件不适用于频率选择性信道,会降低有源UE检测的准确性。本文提出了一种基于频率选择性信道增益分析的改进主动式UE检测器(RAUD)。RAUD模块充分利用信道增益,分析UE两种状态特征值之间的差异,提高了有源UE的检测精度。同时,该模块的加入对UL无授权SCMA接收机的复杂度影响甚微。
---
英文标题:
《Active User Detection of Uplink Grant-Free SCMA in Frequency Selective
  Channel》
---
作者:
Feilong Wang, Yuyan Zhang, Hui Zhao, Hanyuan Huang and Jing Li
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Massive machine type communication (mMTC) is one of the three fifth generation mobile networking (5G) key usage scenarios, which is characterized by a very large number of connected devices typically transmitting a relatively low volume of non-delay sensitive data. To support the mMTC communication, an uplink (UL) grant-free sparse code multiple access (SCMA) system has been proposed. In this system, the knowledge of user equipments' (UEs') status should be obtained before decoding the data by a message passing algorithm (MPA). An existing solution is to use the compressive sensing (CS) theory to detect active UEs under the assumed condition of flat fading channel. But the assumed condition is not suitable for the frequency selective channel and will decrease the accuracy of active UEs detection. This paper proposes a new simple module named refined active UE detector (RAUD), which is based on frequency selective channel gain analyzing. By making full use of the channel gain and analyzing the difference between characteristic values of the two status of UEs, RAUD module can enhance the active UEs detection accuracy. Meanwhile, the addition of the proposed module has a negligible effect on the complexity of UL grant-free SCMA receiver.
---
PDF链接:
https://arxiv.org/pdf/1805.03973
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群