全部版块 我的主页
论坛 经济学人 二区 外文文献专区
737 0
2022-03-08
摘要翻译:
本文提出了一种基于短时幅值和相位谱的噪声补偿的语音增强方法。与传统的谱减法的几何方法(GA)不同,本文提出了从含噪语音频谱中减去噪声估计值的方法,该方法利用当前含噪语音帧的低频区域来确定噪声估计值,而不是仅依赖于初始静音帧。该方法具有跟踪非平稳噪声的能力,从而产生了一种非平稳噪声驱动的谱减法语音增强几何方法。然后,将遗传算法的噪声补偿幅度谱与噪声语音谱的不变相位进行重组,并用于相位补偿,得到增强的复谱,用于产生增强的语音帧。利用NOIZEUS数据库中的语音文件进行了大量的仿真,结果表明,在不同信噪比下,本文提出的语音增强方法在客观测量、谱图分析和正式的主观听力测试等方面都优于目前的一些语音增强方法。
---
英文标题:
《Speech Enhancement Based on Non-stationary Noise-driven Geometric
  Spectral Subtraction and Phase Spectrum Compensation》
---
作者:
Md Tauhidul Islam, Udoy Saha, K.T. Shahid, Ahmed Bin Hussain, Celia
  Shahnaz
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--

---
英文摘要:
  In this paper, a speech enhancement method based on noise compensation performed on short time magnitude as well phase spectra is presented. Unlike the conventional geometric approach (GA) to spectral subtraction (SS), here the noise estimate to be subtracted from the noisy speech spectrum is proposed to be determined by exploiting the low frequency regions of current frame of noisy speech rather than depending only on the initial silence frames. This approach gives the capability of tracking non-stationary noise thus resulting in a non-stationary noise-driven geometric approach of spectral subtraction for speech enhancement. The noise compensated magnitude spectrum from the GA step is then recombined with unchanged phase of noisy speech spectrum and used in phase compensation to obtain an enhanced complex spectrum, which is used to produce an enhanced speech frame. Extensive simulations are carried out using speech files available in the NOIZEUS database shows that the proposed method consistently outperforms some of the recent methods of speech enhancement when employed on the noisy speeches corrupted by street or babble noise at different levels of SNR in terms of objective measures, spectrogram analysis and formal subjective listening tests.
---
PDF链接:
https://arxiv.org/pdf/1803.0287
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群