摘要翻译:
通过考虑时间相关的外部驱动协议,将布朗粒子非平衡稳态(NSS)的Tooru-Cohen分析推广到布朗粒子的非平衡振荡态(NOS)。我们考虑了一个无界带电布朗粒子在振荡电场中的存在,证明了功涨落定理,该定理在任何初始分布和任何时刻都是有效的。对于Tooru和Cohen所考虑的调和有界的常拖布朗粒子,功涨落定理对任何初始条件(也是NSS)都有效,但只在大时间范围内有效。利用带约束的Onsager-Machlup拉格朗日函数,得到了与频率有关的功分布函数,并用Onsager-Machlup泛函描述了该系统的熵产率和耗散函数的性质。
---
英文标题:
《Onsager-Machlup theory and work fluctuation theorem for a harmonically
  driven Brownian particle》
---
作者:
Navinder Singh
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
  We extend Tooru-Cohen analysis for nonequilirium steady state(NSS) of a Brownian particle to nonequilibrium oscillatory state (NOS) of Brownian particle by considering time dependent external drive protocol. We consider an unbounded charged Brownian particle in the presence of an oscillating electric field and prove work fluctuation theorem, which is valid for any initial distribution and at all times. For harmonically bounded and constantly dragged Brownian particle considered by Tooru and Cohen, work fluctuation theorem is valid for any initial condition(also NSS), but only in large time limit. We use Onsager-Machlup Lagrangian with a constraint to obtain frequency dependent work distribution function, and describe entropy production rate and properties of dissipation functions for the present system using Onsager-Machlup functional. 
---
PDF链接:
https://arxiv.org/pdf/708.2345