摘要翻译:
本文提出了一种提高调频连续波(FMCW)太赫兹成像分辨率超过衍射极限的新方法。我们的方法包括两个阶段。首先,利用SINC包络对信号进行深度方向的重构,在深度估计和信号参数提取方面都有很大的改进。由此得到的高精度深度估计用于推导出精确的反射强度THz图像。该图像在方法的第二阶段被送入二维盲反卷积过程,以提高横向太赫兹图像的分辨率超过衍射极限。在577 GHz带宽126 GHz的FMCW系统上获得的实验数据表明,相对于衍射极限,该方法将横向分辨率提高了2.29~346.2um。深度精度91um。有趣的是,与传统的高斯反卷积相比,这种盲反卷积概念实现的横向分辨率增强导致了更好的结果。给出了一个PCB分辨率目标的实验数据,以量化分辨率增强并与现有的图像增强方法进行比较。该技术允许暴露PCB测试样品的交织纤维增强嵌入结构。
---
英文标题:
《Computational Image Enhancement for Frequency Modulated Continuous Wave
(FMCW) THz Image》
---
作者:
Tak Ming Wong, Matthias Kahl, Peter Haring Bol\'ivar, Andreas Kolb
---
最新提交年份:
2019
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
---
英文摘要:
In this paper, a novel method to enhance Frequency Modulated Continuous Wave (FMCW) THz imaging resolution beyond its diffraction limit is proposed. Our method comprises two stages. Firstly, we reconstruct the signal in depth-direction using a sinc-envelope, yielding a significant improvement in depth estimation and signal parameter extraction. The resulting high precision depth estimate is used to deduce an accurate reflection intensity THz image. This image is fed in the second stage of our method to a 2D blind deconvolution procedure, adopted to enhance the lateral THz image resolution beyond the diffraction limit. Experimental data acquired with a FMCW system operating at 577 GHz with a bandwidth of 126 GHz shows that the proposed method enhances the lateral resolution by a factor of 2.29 to 346.2um with respect to the diffraction limit. The depth accuracy is 91um. Interestingly, the lateral resolution enhancement achieved with this blind deconvolution concept leads to better results in comparison to conventional gaussian deconvolution. Experimental data on a PCB resolution target is presented, in order to quantify the resolution enhancement and to compare the performance with established image enhancement approaches. The presented technique allows exposure of the interwoven fibre reinforced embedded structures of the PCB test sample.
---
PDF链接:
https://arxiv.org/pdf/1802.05457