摘要翻译:
这是一篇致力于辛双形几何程序的论文,其中许多基本概念是根据亏格0 GW不变量定义的。我们证明了正的无迹辛因子的存在往往意味着环境流形有一个非零的无迹亏格0 GW不变量,因此也是无迹的。这证实了关于无迹辛约数的二分法的一部分。另外,给出了一个较一般的无路辛流形的构造,推广了McDuff的一些漂亮的结果。
---
英文标题:
《Uniruled symplectic divisors》
---
作者:
Tian-Jun Li, Yongbin Ruan
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Symplectic Geometry 辛几何
分类描述:Hamiltonian systems, symplectic flows, classical integrable systems
哈密顿系统,辛流,经典可积系统
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
This is a paper devoted to the symplectic birational geometry program where many basic notions are defined in terms of genus 0 GW invariants. We show that the existence of a positive uniruled symplectic divisor often implies that the ambient manifold has a nonzero uniruled genus 0 GW invariant, hence is uniruled as well. This confirms a part of the dichotomy on uniruled symplectic divisors. In addition, it gives a rather general construction of uniruled symplectic manifolds, generalizing some beautiful results of McDuff.
---
PDF链接:
https://arxiv.org/pdf/0711.4254