摘要翻译:
证明了适当支持的相干束的有界导子范畴等价于域上拟射影格式的完美导子范畴上的局部有限上同调函子范畴。引入伪伴随和Rouquier函子的概念,并对它们进行了研究。作为这些思想和结果的应用,我们将Bondal和Orlov的重构结果推广到Gorenstein射影簇。
---
英文标题:
《Derived categories of sheaves on singular schemes with an application to
reconstruction》
---
作者:
Matthew Robert Ballard
---
最新提交年份:
2011
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove that the bounded derived category of coherent sheaves with proper support is equivalent to the category of locally-finite, cohomological functors on the perfect derived category of a quasi-projective scheme over a field. We introduce the notions of pseudo-adjoints and Rouquier functors and study them. As an application of these ideas and results, we extend the reconstruction result of Bondal and Orlov to Gorenstein projective varieties.
---
PDF链接:
https://arxiv.org/pdf/0801.2599