摘要翻译:
我们证明了一个一般定理,它给出了一个在另一个簇Y的导出范畴中存在一个合适的函子允许一个完全例外序列的情形下,簇X的导出自等价群中的一个非平凡关系。应用包括X是Calabi-Yau且X是Y中的超曲面(这推广了作者和R.L.Karp的一个结果,其中Y是一个加权射影空间)或Y是X中的超曲面的情形。
---
英文标题:
《Exceptional sequences and derived autoequivalences》
---
作者:
Alberto Canonaco
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove a general theorem that gives a non trivial relation in the group of derived autoequivalences of a variety (or stack) X, under the assumption that there exists a suitable functor from the derived category of another variety Y admitting a full exceptional sequence. Applications include the case in which X is Calabi-Yau and either X is a hypersurface in Y (this extends a previous result by the author and R.L. Karp, where Y was a weighted projective space) or Y is a hypersurface in X. The proof uses a resolution of the diagonal of Y constructed from the exceptional sequence.
---
PDF链接:
https://arxiv.org/pdf/0801.0173