摘要翻译:
给出有限域上的一条曲线,计算其上不一定具有互素秩和度的稳定丛的个数。我们将这一结果应用于曲线上稳定丛模空间的虚Poincare多项式的计算。对虚Hodge多项式和动机提出了一个类似的公式。
---
英文标题:
《Poincare polynomials of moduli spaces of stable bundles over curves》
---
作者:
Sergey Mozgovoy
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Given a curve over a finite field, we compute the number of stable bundles of not necessarily coprime rank and degree over it. We apply this result to compute the virtual Poincare polynomials of the moduli spaces of stable bundles over a curve. A similar formula for the virtual Hodge polynomials and motives is conjectured.
---
PDF链接:
https://arxiv.org/pdf/0711.0634