摘要翻译:
本文用两种不同的方法刻画了分支的雅可比牛顿多边形。这些特征给出了二元复级数不可约的组合判据,以及复曲线为复平面分支的判别所必须满足的必要条件。
---
英文标题:
《Characterization of jacobian Newton polygons of plane branches and new
criteria of irreducibility》
---
作者:
Evelia R. Garc\'ia Barroso and Janusz Gwo\'zdziewicz
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper we characterize, in two different ways, the Newton polygons which are jacobian Newton polygons of a branch. These characterizations give in particular combinatorial criteria of irreducibility for complex series in two variables and necessary conditions which a complex curve has to satisfy in order to be the discriminant of a complex plane branch.
---
PDF链接:
https://arxiv.org/pdf/0805.4257