摘要翻译:
利用耦合映象格研究了空间扩展混沌系统中Lyapunov向量的时空动力学。通过将问题转化为尺度不变生长曲面的语言,我们确定了LVs的内在长度、尺度和对应于主导不稳定方向的时空相关性。我们发现所谓的“特征”LVs表现出空间局部性,在给定的时空轨迹上具有很强的聚类性,以及相应曲面的显着的动态标度特性。相比之下,常用的后向LVs(通过Gram-Schmidt正交化得到)分布在整个系统中,由于构造的动态相关中的伪影,不表现出动态缩放。
---
英文标题:
《Spatiotemporal structure of Lyapunov vectors in chaotic coupled-map
lattices》
---
作者:
Ivan G. Szendro, Diego Paz\'o, Miguel A. Rodr\'iguez, Juan M. L\'opez
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Chaotic Dynamics 混沌动力学
分类描述:Dynamical systems, chaos, quantum chaos, topological dynamics, cycle expansions, turbulence, propagation
动力系统,混沌,量子混沌,拓扑动力学,循环展开,湍流,传播
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
The spatiotemporal dynamics of Lyapunov vectors (LVs) in spatially extended chaotic systems is studied by means of coupled-map lattices. We determine intrinsic length scales and spatiotemporal correlations of LVs corresponding to the leading unstable directions by translating the problem to the language of scale-invariant growing surfaces. We find that the so-called 'characteristic' LVs exhibit spatial localization, strong clustering around given spatiotemporal loci, and remarkable dynamic scaling properties of the corresponding surfaces. In contrast, the commonly used backward LVs (obtained through Gram-Schmidt orthogonalization) spread all over the system and do not exhibit dynamic scaling due to artifacts in the dynamical correlations by construction.
---
PDF链接:
https://arxiv.org/pdf/706.1706