摘要翻译:
设X是有理非奇异紧连通实代数曲面。用Aut(X)表示X的实代数自同构群。我们证明了对于所有自然整数n,群Aut(X)在X上传递n。作为应用,我们给出了两个有理非奇异紧连通实代数曲面同构当且仅当它们同胚为拓扑曲面这一事实的一个新的更简单的证明。
---
英文标题:
《The group of automorphisms of a real rational surface is n-transitive》
---
作者:
Johannes Huisman and Fr\'ed\'eric Mangolte
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let X be a rational nonsingular compact connected real algebraic surface. Denote by Aut(X) the group of real algebraic automorphisms of X. We show that the group Aut(X) acts n-transitively on X, for all natural integers n. As an application we give a new and simpler proof of the fact that two rational nonsingular compact connected real algebraic surfaces are isomorphic if and only if they are homeomorphic as topological surfaces.
---
PDF链接:
https://arxiv.org/pdf/0708.3992