摘要翻译:
本文研究了在初始资本固定的情况下,通过动态交易,在随机基准上最大化优绩概率的投资组合问题。在一般的不完全市场框架下,该随机控制问题可以化为一个复合纯假设检验问题。我们分析了这个纯测试问题与随机测试问题之间的联系,并由此导出了最大性能超越概率的对偶表示。此外,在一个完整的市场环境下,我们提供了一个封闭形式的解决方案,以击败杠杆式交易所买卖基金的问题。对于不完全随机因子模型下的一般基准,我们给出了最大性能超越概率的Hamilton-Jacobi-Bellman偏微分方程刻画。
---
英文标题:
《Outperformance Portfolio Optimization via the Equivalence of Pure and
Randomized Hypothesis Testing》
---
作者:
Tim Leung and Qingshuo Song and Jie Yang
---
最新提交年份:
2013
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
英文摘要:
We study the portfolio problem of maximizing the outperformance probability over a random benchmark through dynamic trading with a fixed initial capital. Under a general incomplete market framework, this stochastic control problem can be formulated as a composite pure hypothesis testing problem. We analyze the connection between this pure testing problem and its randomized counterpart, and from latter we derive a dual representation for the maximal outperformance probability. Moreover, in a complete market setting, we provide a closed-form solution to the problem of beating a leveraged exchange traded fund. For a general benchmark under an incomplete stochastic factor model, we provide the Hamilton-Jacobi-Bellman PDE characterization for the maximal outperformance probability.
---
PDF链接:
https://arxiv.org/pdf/1109.5316