全部版块 我的主页
论坛 经济学人 二区 外文文献专区
313 0
2022-03-08
摘要翻译:
我们看着与射影线相关的AG码,用代数几何的最新方法重新检查确定它们的自同构群的问题(最初由Duer在1987年使用组合技术研究)。我们将这些有限群归类为射影线的AG码的自同构群,并给出了这些群如何出现的显式描述。给出了具有大自同构群G的广义Reed-Solomon码的例子,如G=PSL(2,q),并显式地描述了它们的G-模结构。
---
英文标题:
《Automorphism groups of generalized Reed-Solomon codes》
---
作者:
David Joyner, Amy Ksir, Will Traves
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Combinatorics        组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--

---
英文摘要:
  We look at AG codes associated to the projective line, re-examining the problem of determining their automorphism groups (originally investigated by Duer in 1987 using combinatorial techniques) using recent methods from algebraic geometry. We (re)classify those finite groups that can arise as the automorphism group of an AG code for the projective line and give an explicit description of how these groups appear. We also give examples of generalized Reed-Solomon codes with large automorphism groups G, such as G=PSL(2,q), and explicitly describe their G-module structure.
---
PDF链接:
https://arxiv.org/pdf/0801.4007
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群