摘要翻译:
对于物联网(IoT)支持的5G系统中的设备到设备(D2D)通信,考虑到不同链路之间的复杂干扰,集中分配资源是有限的。如果D2D链路由增强型节点基站(eNB)控制,并且因此,它仍然是eNB的负担,并且它导致延迟的等待时间。提出了一种基于深度学习的基于蜂窝网络的IoT-D2D通信全自主功率分配方法。在所提出的方案中,IoT-D2D发射机独立于eNB和其他IoT-D2D设备决定发射功率。此外,通过分布式深度学习,可以对功率集进行近似优化,以实现更高的小区吞吐量。我们提出了一个分布式深度学习架构,在该架构中,设备作为一个群体进行训练,但独立运行。
深度学习可以在抑制对eNB干扰的同时获得接近最优的细胞吞吐量。
---
英文标题:
《Autonomous Power Allocation based on Distributed Deep Learning for
Device-to-Device Communication Underlaying Cellular Network》
---
作者:
Jeehyeong Kim, Joohan Park, Jaewon Noh, and Sunghyun Cho
---
最新提交年份:
2020
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
---
英文摘要:
For Device-to-device (D2D) communication of Internet-of-Things (IoT) enabled 5G system, there is a limit to allocating resources considering a complicated interference between different links in a centralized manner. If D2D link is controlled by an enhanced node base station (eNB), and thus, remains a burden on the eNB and it causes delayed latency. This paper proposes a fully autonomous power allocation method for IoT-D2D communication underlaying cellular networks using deep learning. In the proposed scheme, an IoT-D2D transmitter decides the transmit power independently from an eNB and other IoT-D2D devices. In addition, the power set can be nearly optimized by deep learning with distributed manner to achieve higher cell throughput. We present a distributed deep learning architecture in which the devices are trained as a group but operate independently. The deep learning can attain near optimal cell throughput while suppressing interference to eNB.
---
PDF链接:
https://arxiv.org/pdf/1802.02736