摘要翻译:
本文对奇数阶n>=3的分裂中心单Jordan代数,在mod2系数(基域特征不为2)的Galois上同调中,确定了所有可能的上同调不变量。对于正交型和例外型的J已经得到了这一结果,我们将这些结果推广到酉型和辛型。我们将用我们的结果来计算一些群的本质维数,例如,我们证明了对于n个奇数,ed(PSp(2n))=n+1。
---
英文标题:
《Cohomological invariants of odd degree Jordan algebras》
---
作者:
Mark L. MacDonald
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Rings and Algebras 环与代数
分类描述:Non-commutative rings and algebras, non-associative algebras, universal algebra and lattice theory, linear algebra, semigroups
非交换环与代数,非结合代数,泛代数与格论,线性代数,半群
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper we determine all possible cohomological invariants of Aut(J)-torsors in Galois cohomology with mod 2 coefficients (characteristic of the base field not 2), for J a split central simple Jordan algebra of odd degree n>=3. This has already been done for J of orthogonal and exceptional type, and we extend these results to unitary and symplectic type. We will use our results to compute the essential dimensions of some groups, for example we show that ed(PSp(2n))=n+1 for n odd.
---
PDF链接:
https://arxiv.org/pdf/0801.1634