全部版块 我的主页
论坛 经济学人 二区 外文文献专区
283 0
2022-03-08
摘要翻译:
不同的特征对特定的学习问题有不同的相关性。一些特征不太相关;虽然有些很重要。一个算法可以根据专家意见或先验学习给出特征重要性的知识,而不是使用特征选择来选择最相关的特征。如果学习者考虑到特征的重要性,学习可以更快更准确。相关辅助神经网络(CANN)就是这样一种算法。CANN将特征重要性视为目标属性与特征之间的相关系数。CANN对常规前馈神经网络进行了修正,使其既能拟合相关值,又能拟合训练数据。实验结果表明,CANN算法比采用两步特征选择方法和常规学习算法更快、更准确。
---
英文标题:
《Using Feature Weights to Improve Performance of Neural Networks》
---
作者:
Ridwan Al Iqbal
---
最新提交年份:
2011
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Computer Vision and Pattern Recognition        计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--

---
英文摘要:
  Different features have different relevance to a particular learning problem. Some features are less relevant; while some very important. Instead of selecting the most relevant features using feature selection, an algorithm can be given this knowledge of feature importance based on expert opinion or prior learning. Learning can be faster and more accurate if learners take feature importance into account. Correlation aided Neural Networks (CANN) is presented which is such an algorithm. CANN treats feature importance as the correlation coefficient between the target attribute and the features. CANN modifies normal feed-forward Neural Network to fit both correlation values and training data. Empirical evaluation shows that CANN is faster and more accurate than applying the two step approach of feature selection and then using normal learning algorithms.
---
PDF链接:
https://arxiv.org/pdf/1101.4918
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群