全部版块 我的主页
论坛 经济学人 二区 外文文献专区
406 0
2022-03-08
摘要翻译:
本文研究了被加性复高斯噪声破坏的低阶高维张量的检测问题。在张量的所有维数以相同的速率向$+\infty$收敛的渐近状态下,推广了已有的关于秩1张量的结果。证明了如果依赖于低秩张量的某一参数低于一个阈值,那么零假设和低秩张量的存在是不可区分的假设,因为没有任何检验比随机选择更好。
---
英文标题:
《On the non-detectability of spiked large random tensors》
---
作者:
Antoine Chevreuil and Philippe Loubaton
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  This paper addresses the detection of a low rank high-dimensional tensor corrupted by an additive complex Gaussian noise. In the asymptotic regime where all the dimensions of the tensor converge towards $+\infty$ at the same rate, existing results devoted to rank 1 tensors are extended. It is proved that if a certain parameter depending on the low rank tensor is below a threshold, then the null hypothesis and the presence of the low rank tensor are undistinguishable hypotheses in the sense that no test performs better than a random choice.
---
PDF链接:
https://arxiv.org/pdf/1802.07093
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群