摘要翻译:
我们发展了一些研究代数簇的Fourier-Mukai伙伴的方法。作为应用,我们证明了阿贝尔变体有有限多个Fourier-Mukai伴,并且它们是由其导出的相干D$-模范畴唯一决定的。我们还推广了a.Bondal和D.Orlov的一个著名定理。
---
英文标题:
《Some finiteness results for Fourier-Mukai partners》
---
作者:
David Favero
---
最新提交年份:
2011
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Category Theory 范畴理论
分类描述:Enriched categories, topoi, abelian categories, monoidal categories, homological algebra
丰富范畴,topoi,abelian范畴,monoidal范畴,同调代数
--
---
英文摘要:
We develop some methods for studying the Fourier-Mukai partners of an algebraic variety. As applications we prove that abelian varieties have finitely many Fourier-Mukai partners and that they are uniquely determined by their derived category of coherent $D$-modules. We also generalize a famous theorem due to A. Bondal and D. Orlov.
---
PDF链接:
https://arxiv.org/pdf/0712.0201