摘要翻译:
经典的基于全变差(TV)的迭代重建算法假设信号是分段平滑的,这使得重建结果受到过平滑效应的影响。针对这一问题,本文提出了一种新的基于群稀疏正则化的同步代数重建技术(GSR-SART)。基于组的稀疏表示方法将组的概念作为稀疏表示的基本单元,而不是片的概念作为图像域的先验正则化项,以消除过平滑效应。利用欧氏距离度量相似度,将非局部斑块划分为不同的聚类,同时研究了单幅图像中的稀疏性和非局部相似性。应用分裂Bregman迭代算法得到数值格式。实验结果表明,我们的方法在定性和定量上都优于现有的几种重建方法,包括滤波反投影、期望最大化、SART和基于TV的凸集投影。
---
英文标题:
《Few-View CT Reconstruction with Group-Sparsity Regularization》
---
作者:
Peng Bao, Jiliu Zhou, Yi Zhang
---
最新提交年份:
2018
---
分类信息:
一级分类:Physics 物理学
二级分类:Medical Physics 医学物理学
分类描述:Radiation therapy. Radiation dosimetry. Biomedical imaging modelling. Reconstruction, processing, and analysis. Biomedical system modelling and analysis. Health physics. New imaging or therapy modalities.
放射治疗。辐射剂量学。生物医学成像建模。重建、处理和分析。生物医学系统建模与分析。健康物理学。新的成像或治疗方式。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
---
英文摘要:
Classical total variation (TV) based iterative reconstruction algorithms assume that the signal is piecewise smooth, which causes reconstruction results to suffer from the over-smoothing effect. To address this problem, this work presents a novel computed tomography (CT) reconstruction method for the few-view problem called the group-sparsity regularization-based simultaneous algebraic reconstruction technique (GSR-SART). Group-based sparse representation, which utilizes the concept of a group as the basic unit of sparse representation instead of a patch, is introduced as the image domain prior regularization term to eliminate the over-smoothing effect. By grouping the nonlocal patches into different clusters with similarity measured by Euclidean distance, the sparsity and nonlocal similarity in a single image are simultaneously explored. The split Bregman iteration algorithm is applied to obtain the numerical scheme. Experimental results demonstrate that our method both qualitatively and quantitatively outperforms several existing reconstruction methods, including filtered back projection, expectation maximization, SART, and TV-based projections onto convex sets.
---
PDF链接:
https://arxiv.org/pdf/1803.01546