摘要翻译:
设P(x,y)为有理多项式,Q中的k为泛值。如果曲线(P(x,y)=k)是不可约的,并且允许无穷多个坐标为整数的点,则存在代数自同构将P(x,y)送到多项式x或x^2-dy^2。此外,对于这类曲线(以及其他曲线),我们给出了一个积分点数(x,y)的锐利界,其中x和y有界。
---
英文标题:
《Integral points on generic fibers》
---
作者:
Arnaud Bodin
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
Let P(x,y) be a rational polynomial and k in Q be a generic value. If the curve (P(x,y)=k) is irreducible and admits an infinite number of points whose coordinates are integers then there exist algebraic automorphisms that send P(x,y) to the polynomial x or to x^2-dy^2. Moreover for such curves (and others) we give a sharp bound for the number of integral points (x,y) with x and y bounded.
---
PDF链接:
https://arxiv.org/pdf/0801.1409