摘要翻译:
我们引入了一个均值恢复SDE,它的解自然定义在相关矩阵空间上。这种SDE可以看作是众所周知的赖特-费雪扩散的一种扩展。我们给出了保证SDE弱唯一性和强唯一性的条件,并描述了它的遍历极限。我们还揭示了与Wishart过程的一个有用的联系,它使我们理解如何获得完整的SDE。然后,我们重点对这种扩散进行了模拟,并给出了实现二阶弱收敛的离散化格式。最后,我们解释了如何利用这些相关过程来建模金融资产之间的依赖关系。
---
英文标题:
《A Mean-Reverting SDE on Correlation matrices》
---
作者:
Abdelkoddousse Ahdida (CERMICS), Aur\'elien Alfonsi (CERMICS)
---
最新提交年份:
2012
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
We introduce a mean-reverting SDE whose solution is naturally defined on the space of correlation matrices. This SDE can be seen as an extension of the well-known Wright-Fisher diffusion. We provide conditions that ensure weak and strong uniqueness of the SDE, and describe its ergodic limit. We also shed light on a useful connection with Wishart processes that makes understand how we get the full SDE. Then, we focus on the simulation of this diffusion and present discretization schemes that achieve a second-order weak convergence. Last, we explain how these correlation processes could be used to model the dependence between financial assets.
---
PDF链接:
https://arxiv.org/pdf/1108.5264