摘要翻译:
公开可用的、健壮的自然语言生成算法(NLG)的发布引发了公众的广泛关注和争论。其中一个原因在于该算法据称能够在不同领域生成类似人类的文本。缺乏使用激励任务来评估人们(a)是否能够区分和(b)是否更喜欢算法生成的文本而不是人类书写的文本的经验证据。我们进行了两个实验,评估对最先进的自然语言生成算法GPT-2(Ntotal=830)的行为反应。利用人类诗歌的相同起跑线,GPT-2产生了诗歌样本。从这些样本中,要么随机选择一首诗(循环外的人),要么选择最好的一首诗(循环内的人),然后与一首人写的诗匹配。在一个新的激励版本的图灵测试中,参与者在人在回路中的治疗中未能可靠地检测到算法生成的诗歌,但在人在回路外的治疗中取得了成功。此外,人们对算法生成的诗歌表现出轻微的厌恶,这与参与者是否被告知诗歌的算法起源(透明性)或不透明性无关。我们讨论了这些结果对NLG算法产生类人文本的性能的传达,并提出了在人-智能体实验环境中研究此类学习算法的方法。
---
英文标题:
《Artificial Intelligence versus Maya Angelou: Experimental evidence that
people cannot differentiate AI-generated from human-written poetry》
---
作者:
Nils K\"obis, Luca Mossink
---
最新提交年份:
2020
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Computation and Language 计算与语言
分类描述:Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.
涵盖自然语言处理。大致包括ACM科目I.2.7类的材料。请注意,人工语言(编程语言、逻辑学、形式系统)的工作,如果没有明确地解决广义的自然语言问题(自然语言处理、计算语言学、语音、文本检索等),就不适合这个领域。
--
一级分类:Economics 经济学
二级分类:General Economics 一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
---
英文摘要:
The release of openly available, robust natural language generation algorithms (NLG) has spurred much public attention and debate. One reason lies in the algorithms' purported ability to generate human-like text across various domains. Empirical evidence using incentivized tasks to assess whether people (a) can distinguish and (b) prefer algorithm-generated versus human-written text is lacking. We conducted two experiments assessing behavioral reactions to the state-of-the-art Natural Language Generation algorithm GPT-2 (Ntotal = 830). Using the identical starting lines of human poems, GPT-2 produced samples of poems. From these samples, either a random poem was chosen (Human-out-of-the-loop) or the best one was selected (Human-in-the-loop) and in turn matched with a human-written poem. In a new incentivized version of the Turing Test, participants failed to reliably detect the algorithmically-generated poems in the Human-in-the-loop treatment, yet succeeded in the Human-out-of-the-loop treatment. Further, people reveal a slight aversion to algorithm-generated poetry, independent on whether participants were informed about the algorithmic origin of the poem (Transparency) or not (Opacity). We discuss what these results convey about the performance of NLG algorithms to produce human-like text and propose methodologies to study such learning algorithms in human-agent experimental settings.
---
PDF链接:
https://arxiv.org/pdf/2005.09980