全部版块 我的主页
论坛 经济学人 二区 外文文献专区
415 0
2022-03-11
摘要翻译:
通过仿射图超曲面的补类,给出了构造代数几何Feynman规则的一般步骤,即通过浸没锥簇的Grothendieck环因子的Feynman图的Connes-Kreimer Hopf代数的性质。特别是,这映射到通常的Grothendieck变种环,定义了motivic Feynman规则。我们还构造了一个具有多项式环中值的代数几何Feynman规则,该规则不通过通常的Grothendieck环因子,它是由奇异变体的特征类定义的。该不变量作为一个特殊值,恢复了射影图超曲面补的欧拉特性。构造这个不变量的主要结果是两个射影变体连接的特征类的一个公式。我们讨论了BPHZ重正化过程在这个代数几何环境中的应用,以及一些由配分函数引起的与motivic Feynman规则有关的motivic zeta函数。
---
英文标题:
《Algebro-geometric Feynman rules》
---
作者:
Paolo Aluffi (FSU) and Matilde Marcolli (Caltech)
---
最新提交年份:
2008
---
分类信息:

一级分类:Physics        物理学
二级分类:High Energy Physics - Theory        高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
一级分类:Physics        物理学
二级分类:Mathematical Physics        数学物理
分类描述:Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Mathematical Physics        数学物理
分类描述:math.MP is an alias for math-ph. Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
math.mp是math-ph的别名。这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--

---
英文摘要:
  We give a general procedure to construct algebro-geometric Feynman rules, that is, characters of the Connes-Kreimer Hopf algebra of Feynman graphs that factor through a Grothendieck ring of immersed conical varieties, via the class of the complement of the affine graph hypersurface. In particular, this maps to the usual Grothendieck ring of varieties, defining motivic Feynman rules. We also construct an algebro-geometric Feynman rule with values in a polynomial ring, which does not factor through the usual Grothendieck ring, and which is defined in terms of characteristic classes of singular varieties. This invariant recovers, as a special value, the Euler characteristic of the projective graph hypersurface complement. The main result underlying the construction of this invariant is a formula for the characteristic classes of the join of two projective varieties. We discuss the BPHZ renormalization procedure in this algebro-geometric context and some motivic zeta functions arising from the partition functions associated to motivic Feynman rules.
---
PDF链接:
https://arxiv.org/pdf/0811.2514
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群